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Abstract. Landslides and flash floods are geomorphic haz-
ards (GHs) that often co-occur and interact. They generally
occur very quickly, leading to catastrophic socioeconomic
impacts. Understanding the temporal patterns of occurrence
of GH events is essential for hazard assessment, early warn-
ing, and disaster risk reduction strategies. However, tempo-
ral information is often poorly constrained, especially in fre-
quently cloud-covered tropical regions, where optical-based
satellite data are insufficient. Here we present a regionally
applicable methodology to accurately estimate GH event tim-
ing that requires no prior knowledge of the GH event timing,
using synthetic aperture radar (SAR) remote sensing. SAR
can penetrate through clouds and therefore provides an ideal
tool for constraining GH event timing. We use the open-
access Copernicus Sentinel-1 (S1) SAR satellite that pro-
vides global coverage, high spatial resolution (∼ 10–15 m),
and a high repeat time (6–12 d) from 2016 to 2020. We inves-
tigate the amplitude, detrended amplitude, spatial amplitude
correlation, coherence, and detrended coherence time series
in their suitability to constrain GH event timing. We apply
the methodology on four recent large GH events located in
Uganda, Rwanda, Burundi, and the Democratic Republic of
the Congo (DRC) containing a total of about 2500 manually
mapped landslides and flash flood features located in several
contrasting landscape types. The amplitude and detrended

amplitude time series in our methodology do not prove to
be effective in accurate GH event timing estimation, with es-
timated timing accuracies ranging from a 13 to 1000 d dif-
ference. A clear increase in accuracy is obtained from spatial
amplitude correlation (SAC) with estimated timing accura-
cies ranging from a 1 to 85 d difference. However, the most
accurate results are achieved with coherence and detrended
coherence with estimated timing accuracies ranging from a
1 to 47 d difference. The amplitude time series reflect the in-
fluence of seasonal dynamics, which cause the timing esti-
mations to be further away from the actual GH event occur-
rence compared to the other data products. Timing estima-
tions are generally closer to the actual GH event occurrence
for GH events within homogenous densely vegetated land-
scape and further for GH events within complex cultivated
heterogenous landscapes. We believe that the complexity of
the different contrasting landscapes we study is an added
value for the transferability of the methodology, and together
with the open-access and global coverage of S1 data it has
the potential to be widely applicable.
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1 Introduction

Landslides and flash floods are geomorphic hazards (GHs)
that can occur very quickly, sometimes in a matter of a few
hours. GHs frequently co-occur and interact (e.g. Rengers
et al., 2016); they have a significant impact on the landscape
(Petersen, 2001; Korup et al., 2010) and are severe threats for
infrastructure and human life (Bradshaw et al., 2007; Kjek-
stad and Highland, 2009; Froude and Petley, 2018). Land-
slides and flash floods are often studied in isolation. How-
ever, it is their combined occurrence that can lead to more
extreme impacts. For example, in 2013, several people were
killed and ∼ 7000 lost their homes in the Rwenzori Moun-
tains in Uganda by a single debris-rich flash flood fed by
upstream landslides (Jacobs et al., 2016a). Also, in 2011,
a combination of flash flooding and mudslides across the
highlands of the state of Rio de Janeiro claimed the lives of
916 people and left 35 000 people homeless (Marengo and
Alves, 2012).

Understanding the temporal occurrence of GH events is
essential for hazard assessment, early warning, and disas-
ter risk reduction strategies (van Westen et al., 2008; Ali et
al., 2017; Liu et al., 2018; Guzzetti et al., 2020). Tempo-
ral information with an accuracy of a few days is needed to
understand the close association between precipitation and
the occurrence of GH events (Guzzetti et al., 2008, 2020;
Turkington et al., 2014; Marc et al., 2018). For site-specific
and local-scale investigation, this accurate information on the
timing of GH events can be obtained with field-based ap-
proaches such as watershed/hillslope monitoring (Guzzetti
et al., 2012) or a network of observers (Jacobs et al., 2019;
Sekajugo et al., 2022). However, when information on the
timing of GH events is needed at a regional level, the acqui-
sition of such data can only be achieved with satellite remote
sensing (Joyce et al., 2009; Le Cozannet et al., 2020), espe-
cially in mountainous regions with difficult field accessibility
and where monitoring and observation capacities are limited
(Dewitte et al., 2021).

Satellite remote sensing, and more specifically the use of
optical imagery, is a well-developed field of research to ac-
curately determine the location of GH (Stumpf et al., 2014;
Behling et al., 2014, 2016; Mohan et al., 2021). Optical-
based satellite approaches can also be used for extracting the
information on the timing of the GH events (e.g. Kennedy
et al., 2018; Deijns et al., 2020); however such approaches
are of limited use in cloud-covered environments, especially
if temporal information with an accuracy of a few days is
needed.

Synthetic aperture radar (SAR) satellite, which is an active
system with the ability to penetrate cloud cover, holds a great
potential for characterising the timing of GHs. Additionally,
the sensitivity of SAR satellite data to surface changes, in-
cluding vegetation changes (Hagberg et al., 1995; Balzter,
2001; Barrett et al., 2012), soil moisture changes (Dobson
and Ulaby, 1986; Dubois et al., 1995; Ulaby et al., 1996;

Nolan and Fatland, 2003; Srivastava et al., 2006), and surface
texture changes (Dzurisin, 2006) gives SAR the potential to
display GH timing with an accuracy of days.

SAR-derived products typically used for GH (event) anal-
ysis are amplitude data (i.e. changes in surface backscattering
intensity of SAR signal between two images) (e.g. Mondini,
2017; Mondini et al., 2019; Esposito et al., 2020; DeVries et
al., 2020; Handwerger et al., 2022) for which amplitude cor-
relation is a common method used in amplitude change de-
tection (Mondini et al., 2017; Konishi and Suga, 2018; Jung
and Yun, 2020) and the coherence (i.e. the change in the abil-
ity of SAR wave fronts to stay spatially and/or temporally
in phase between the two images of an interferometric pair)
(Burrows et al., 2019, 2020; Tzouvaras et al., 2020). Addi-
tionally, there is a wide range of studies that use SAR-derived
ground deformation to map landslides (Casagli et al., 2017;
Solari et al., 2020) or analyse pre-cursor movements (Intri-
eri et al., 2018) and internal variability (Nobile et al., 2018).
However, they are dependent on consistent high coherence
values at the GH locations, which will make these methods
of limited use in highly vegetated landscapes (e.g. the trop-
ics) (Komac et al., 2015; Solari et al., 2020) and for fast-
moving GHs (e.g. shallow landslides and flash floods) (Bur-
rows et al., 2020; Tzouvaras et al., 2020). In recent GH de-
tection studies, amplitude products are usually preferred over
coherence products (Ge et al., 2019; Jung and Yun, 2020;
Mondini et al., 2021), since coherence generally yields less
accurate results due to lower resolution (Burrows et al., 2019,
2020) and a higher number of false positives (Aimaiti et al.,
2019; Jung and Yun, 2020). Despite the increasing use of
SAR imagery for GH detection (Martinis et al., 2015; Pso-
miadis, 2016; Twele et al., 2016; Mondini et al., 2019; Bur-
rows et al., 2020; Jung and Yun, 2020; Tzouvaras et al., 2020;
Jacquemart and Tiampo, 2021; Handwerger et al., 2022), to
date, only the recent study of Burrows et al. (2022) used
SAR to refine the timing of GH inventories. Although lo-
cated in the tropics and showing accurate results, their study
was only applied (1) within a relatively densely vegetated
landscape, (2) only on landslides, (3) using pre-processed
amplitude imagery with Google Earth Engine (GEE) (Gore-
lick et al., 2017) and (4) with a priori knowledge on the
timing of the event (i.e. the year). GH events occur within
a variety of landscapes (Emberson et al., 2020; Dewitte et
al., 2021). Therefore, there is a clear need to calibrate and
validate any GH timing method for varying landscape, and
land use/land cover characteristics. Additionally, the frequent
co-occurrence of landslides and flash floods (Jacobs et al.,
2016b; Rengers et al., 2016) warrants the need to analyse
them using a combined methodology. However, so far, there
has never been research dedicated to their combined tempo-
ral detection using radar satellite.

The Copernicus Sentinel-1 (S1) constellation is frequently
used in GH detection studies (Mondini et al., 2021). Next
to the fact that it is freely available and acquired regionally
(from 2016 onwards), it offers a very good trade-off between
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frequency of acquisition (6/12 d) and spatial resolution (10–
15 m depending on the pre-processing parameters). These ad-
vantages make S1 an attractive tool to integrate in a regional
GH timing methodology.

In this study, we aim to develop a regionally applicable
methodology that automatically estimates GH event timing
using S1 SAR imagery on GH events spatially located, but
with unspecified timing. We analyse landslides and flash
floods together as being co-occurring and interacting events.
We create a methodology that can be applied at the regional
scale in complex and various topographic and land use/land
cover environments. The methodology is developed using
four GH events containing either landslides or a combina-
tion of landslides and flash floods located in contrasting land-
scape types observed within tropical Africa (see Sect. 2.1).
We analyse an unprecedented number of S1 SAR products,
namely amplitude, spatial amplitude correlation (a metric
based on the common amplitude correlation), and coherence.
Specifically, we (1) create S1 SAR time series and anal-
yse their patterns and behaviour at the location of several
GH events, (2) demonstrate and assess the ability to detect
the timing of GH events using changes within the S1 SAR
time series, and (3) investigate the influences of the land-
scape characteristics on the ability to derive the timing from
S1 SAR time series through a sensitivity analysis.

2 Data

2.1 Selection of GH events in a tropical region with
diverse landscapes

We focus on the western branch of the East African Rift, a
mountainous region with high population densities and di-
verse landscape and land use/land cover characteristics (De-
picker et al., 2021; Dewitte et al., 2021). The region has
a bimodal precipitation distribution with two rainy peaks
(October–November and March–April) and a main dry sea-
son (June–August) associated with the north–south migra-
tion of the Intertropical Convergence Zone (ITCZ) (Thiery
et al., 2015; Nicholson, 2017; Monsieurs et al., 2018a) with
annual precipitation ranging from ∼ 0.8 m along the shores
of Lake Tanganyika to easily more than 2 m in the highlands,
with the maximum in the Rwenzori Mountains (Monsieurs,
2020; Van de Walle et al., 2020). The seasonality of the
precipitation strongly controls the occurrence of landslides
and flash floods (Jacobs et al., 2016a, b; Monsieurs et al.,
2018a, b; Kubwimana et al., 2021). Vegetation dynamics are
high in the cultivated areas due to the variety of cropping
practices (crop rotations and shifting cultivation, Heri-Kazi
and Bielders, 2021). Moreover, the region is one of the most
cloud-covered places in the world (Robinson et al., 2019) and
a global hotspot of thunderstorm activity (Thiery et al., 2016,
2017; Peterson et al., 2021).

We investigate four GH events with known days of occur-
rence and located in contrasting landscapes (Fig. 1):

– Event 1 (Uganda GH event) is located in the south-
ern part of the Rwenzori Mountains (Uganda) and
counts 1063 landslide features of which some con-
tribute directly to the sediment load of the valley river
(Fig. 1, Uganda). The event occurred between 21 and
22 May 2020. The terrain consists of pristine forests and
some cultivated landscape (Fig. 2a).

– Event 2 (Rwanda GH event) is located in the Karongi
District (Western Province, Rwanda), counts 494 fea-
tures composed of both landslide and flash floods, and
occurred on 6 May 2018 (Fig. 1, Rwanda). The terrain
consists of an inhabited and highly cultivated landscape
with the presence of agricultural terraces (Fig. 2b).

– Event 3 (Burundi GH event) occurred around the hills
of Nyempundu in the Cibitoke region (north Burundi),
counts 318 features composed of landslides and flash
floods, and occurred between 4 and 5 December 2019.
Here, many landslides contribute directly to the sedi-
ment load of the rivers (Fig. 1, Burundi). The terrain
consists of inhabited cultivated landscape and sporadic
tree cover (Fig. 2c).

– Event 4 (Democratic Republic of the Congo GH event)
occurred west of the city of Uvira (DRC), north-
west of Lake Tanganyika, and counts 609 landslides
and flash flood features that occurred between 16 and
17 April 2020. Many landslides are connected to the
rivers where the flash floods occurred. The debris-rich
flash floods inundated parts of the city (Fig. 1, DRC).
The terrain is characterised by an urban area, cultivated
landscape, grassland, and sporadic tree cover (Fig. 2d).

The locations of the GH events (Fig. 1) are derived us-
ing the Copernicus Sentinel-2 (S2) Multispectral Instru-
ment (MSI), high-resolution (10 m), high-frequency (6–12 d)
satellite imagery. We manually digitised all individual fea-
tures from the first available cloud-free S2 image after
the event and a cloud-free S2 image with similar vegeta-
tion characteristics (compared to the post-event image) be-
fore the event. We use PlanetScope Ortho Scenes (Planet
Team, 2017) for validation of the GH event inventory with a
higher-resolution satellite image. Planet operates with a con-
stellation of multiple small satellites producing very high-
resolution (3 m), high-frequency (up to 1 d) imagery (Ta-
ble 1).

We prefer the use of Planet and S2 over the Maxar or the
Spot/Pléiades images visible in Google Earth because of the
consistency in temporal and spatial resolution. To note, the
Burundi GH event has recently been mapped by Emberson
et al. (2022) by means of a semi-automated method followed
by a manual correction using S2 satellite data. We expect our
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Figure 1. The location of the four GH events with their topographic (left: 30 m ALOS 3D digital elevation model (DEM), GH event features
in black) and optical (right: S2 post-event image, GH event features in yellow) context. Note that in the close vicinity of the GH events of
Uganda and Burundi, large sediment-loaded riverbeds are visible. This is a consequence of the GH events that contributed directly to the
transport of extra material to the rivers, increasing not only their sediment content but also their lateral mobility. These river dynamics are not
included in our analysis. The two panels at the lower left depict the location of the GH sites (S2 imagery). Image credit: contains modified
Copernicus Sentinel data (2022), processed with Google Earth Engine. ALOS 3D DEM data provided by Japan Aerospace Exploration
Agency (JAXA).

Table 1. Image information of manual mapping and dating GH events. Planet images are of the type PlanetScope Ortho Scene (POS).

GH event Sentinel-2 Planet

Date – pre Date – post Tile Type Date Type

Uganda 16 Aug 2019 1 Jun 2020 35NRA L1C 29 Jun 2020 POS
Rwanda 9 Mar 2018 16 Jun 2018 35MQT L1C 7 Dec 2019 POS
Burundi 6 Aug 2019 23 Jan 2020 35MQT L1C 12 Jun 2018 POS
DRC 2 Jul 2019 6 Jun 2020 35MQS L1C 6 Oct 2020 POS
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Figure 2. Closeup of the contrasting typical landscapes of the four GH events. Maps data: Google, © 2022 CNES/Airbus (a, b), Google,
© 2022 Maxar Technologies (c, d).

manually mapped Burundi GH event inventory to be sim-
ilar or more accurate since we use a combination of S2 and
Planet satellite data and a completely manual detection work-
flow. The date of GH event occurrences is determined from
local media and field observations, and if not available from
these resources it is determined by the first and last available
imagery from S2 and Planet imagery.

2.2 SAR time series

SAR time series at the GH location are constructed using
the Copernicus S1 Level-1 Single Look Complex (SLC)
imagery acquired in Interferometric Wide (IW) swath. The
S1 satellite is side-looking (right) and operates both on the
ascending (from south to north) and descending (from north
to south) tracks within the C-band frequency. To study the
four GH events (Fig. 1) we use all available high-resolution
S1 imagery (∼ 15× 15 m resolution) from January 2016
to January 2021 at the location of the GH event at tracks
174 (ascending) and 21 (descending). This equals between
196 and 208 ascending and 120 and 193 descending images
per GH event, where images occasionally overlap more than

one GH event with a repeat time of 6 to 12 d with more
consistently 6 d towards recent times. We use both ampli-
tude and coherence information. S1 images over the study
area are provided in vertical–vertical (VV) and vertical–
horizontal (VH) polarisations. Different polarisations result
in different backscattering values (Shibayama et al., 2015;
Psomiadis, 2016; Park and Lee, 2019; Burrows et al., 2022).
Mondini et al. (2019) noted a better definition of landslide-
induced changes in vegetated areas using the VH channel.
In contrast, Burrows et al. (2022) found VV to perform bet-
ter than VH for landslide event timing estimation. Psomi-
adis (2016) concluded that VV polarisation performed bet-
ter than VH polarisation for flash flood mapping. Finally,
VV polarisation images are acquired more consistently at
the locations of our GH events. We therefore decide to use
VV polarisation for our analysis. Due to the side-looking na-
ture of the S1 satellite, it is subjected to foreshortening, lay-
over, and shadowing, which are SAR-inherent quality prob-
lems that are amplified within mountainous regions and af-
fect image quality (Hanssen, 2001; Dzurisin, 2006). GH in-
ventories are masked for foreshortening, layover, and shadow
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areas to remove the individual landslides and flash floods that
fall within these inherently noisy areas.

2.3 SAR controlling factors

SAR amplitude and coherence are influenced by local slope
angle (Hanssen, 2001), soil moisture (Ulaby et al., 1996;
Scott et al., 2017), vegetation (Balzter, 2001; Barrett et al.,
2012), and terrain roughness (Dzurisin, 2006). Coherence is
additionally influenced by atmospheric changes (Rocca et al.,
2000) and due to the use of image pairs, also by the tempo-
ral baseline (time between acquisition of two images), the
perpendicular baseline (distance between the location of ac-
quisition of two images), and the difference in incident an-
gle of the paired images (Hanssen, 2001). Coherence val-
ues are generally very low (high decorrelation) in densely
forested areas due to constant movement of the leaves and
stems (Weydahl, 2001; Tessari et al., 2017), whereas bare
soils or urbanised terrains, due to their static nature, gener-
ally reveal relatively high coherence values (Colesanti and
Wasowski, 2006). An increase in coherence values after
GH event occurrence is therefore expected. Amplitude val-
ues, on the other hand, show to have a quite complex reaction
to terrain change. Due to the influence of soil moisture and
roughness change on the amplitude values, the occurrence
of a GH event could both increase and decrease the ampli-
tude values at the location of the GH event (Mondini et al.,
2021; Burrows et al., 2022). Both precipitation (in chang-
ing leaf and soil wetness) and vegetation patterns can dy-
namically influence SAR amplitude and coherence values,
causing a cumulative effect on the time series (Srivastava et
al., 2006; Brancato et al., 2017). This effect is more promi-
nent over sparsely vegetated areas due to geometric (vege-
tation growth and farming practices) and dielectric (mois-
ture) changes (Strozzi et al., 2000). Additionally, a change in
atmosphere (precipitation events, ionospheric disturbances)
can dynamically influence the coherence values (Rocca et
al., 2000; Jacquemart and Tiampo, 2021). To better assess
the ability to detect GH timing, it is essential to understand
the dynamic factors controlling the behaviour of the signal.

We derive precipitation estimates from the Global Precipi-
tation Measurement (GPM) Level 3 Integrated Multi-satellite
Retrievals for GPM (IMERG) final daily (10 km spatial res-
olution) dataset that has been validated through rain gauge
data within the area (Nakulopa et al. 2022). General vege-
tation patterns per GH event are visualised using the nor-
malised difference vegetation index (NDVI; Tucker, 1979).
NDVI time series are derived from the Landsat 8 (30 m spa-
tial resolution) archive and processed within the GEE en-
vironment. We use the Landsat 8 atmospherically corrected
surface reflectance images provided within the GEE environ-
ment. We masked them for clouds using the quality assess-
ment band resulting from the C Function of Mask (CFMask)
algorithm (Foga et al., 2017).

We choose the lower-resolution Landsat 8 over the higher-
resolution S2 imagery to reduce any unwanted local effects
of NDVI change captured in the higher resolution S2 im-
agery, and since we are only interested in the general vegeta-
tion trends within the area this should be sufficient. From the
cloud-masked images, a spatial-average NDVI time series is
created spanning from 2016–2020 over the undisturbed areas
of the GH event area. The NDVI time series are further pro-
cessed to monthly averages, since we are interested in gen-
eral vegetation patterns visible in the NDVI time series rather
than changes on smaller temporal timescales.

We use the ESA Climate Change Initiative Land Cover
product (ESA, 2016) to categorise GH based on their prior
land cover to assess the influence of land cover on the tim-
ing detectability. This product has been validated within the
region by Depicker et al. (2021), showing an accuracy of
86.1±2.1 % in land cover classification. All abovementioned
factors are considered during the analysis of the SAR time
series and the GH event timing estimations.

3 Methods

3.1 Sentinel-1 pre-processing

The S1 images are pre-processed using the “InSAR auto-
mated Mass processing Toolbox for Multidimensional time
series” (MasTer) (Derauw et al., 2020; d’Oreye et al., 2021)
processing chain (Fig. 3, step 1). MasTer is a tool for
automated SAR and SAR interferometry (InSAR) mass
processing (Samsonov and d’Oreye, 2012; Derauw et al.,
2019, 2020; d’Oreye et al., 2019, 2021) that is incremental
(i.e. only computes the minimal required information when a
new image is available) and optimised for mass processing.
The MasTer workflow is applied on both the ascending and
descending track and consists of the following:

1. The application of orbit correction using the precise or-
bit files provided with the S1 data.

2. The creation of time series of amplitude maps per track.
Amplitude maps of each given track are co-registered
on a reference image taken from that track. Every am-
plitude image in the radar geometry of that track is
cropped and provided with the same grid and dimen-
sions framing the area of interest. Amplitude values are
calibrated to sigma nought values. The amplitude im-
ages are multi-looked by a factor 2 in azimuth and in
range, to reduce speckle, leading to a roughly 28× 5 m
slant range resolution. Radiometric terrain correction is
applied to account for the local incidence angle variat-
ing with slope angle resulting in amplitude values that
are independent of slope angle (Small, 2011).

3. The creation of time series of coherence maps per track.
Coherence maps are created using consecutive images
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throughout the time series for each track with a max-
imum temporal baseline of 12 d and a maximum per-
pendicular baseline of 150 m. The coherence maps are
provided with the same multi-looking factor, grid, and
ground range resolution as the amplitude images.

4. Geocoding the amplitude and coherence maps. The am-
plitude and coherence from all the tracks spanning a
given GH area are geocoded from slant range to ground
range on a common grid with a 15 m by 15 m resolution
using the 30 m ALOS Global Digital Surface Model. We
decided to geocode the SAR imagery to make it compat-
ible with all our other data products and to allow for an
easier visual comparison with optical imagery.

3.2 Spatial amplitude correlation

We adapt the amplitude correlation approach, initially used
for GH spatial detection (Mondini, 2017; Konishi and Suga,
2018; Jung and Yun, 2020), to allow for GH timing detection
at the location of the GH event using the amplitude image
stacks (Fig. 3, step 2). We reason that the spatial correlation
is generally lost when the inter-pixel relationships between
two images change at the location of a GH event. Therefore,
a significant change within the landscape such as a landslide
or a flash flood will cause a significant decorrelation. Due
to the sensitivity of SAR amplitude to changes in vegetation
(Balzter, 2001; Barrett et al., 2012), seasonal greening and
browning trends have a pronounced influence on the ampli-
tude time series (Balzter, 2001; Barrett et al., 2012), which
potentially limits the detectability of the GH event within
the time series. Since spatial correlation is only changing
when the inter-pixel relationships change, general trends that
affect the entire area (lowering or increasing the SAR am-
plitude values) do not influence the inter-pixel relationships
(i.e. no spatial correlation change). Only when significant
inter-pixel change occurs, due to landslides or flash floods,
will the spatial correlation change. The spatial amplitude cor-
relation (SAC) can therefore highlight the GH event occur-
rence within the time series, while reducing the seasonal dy-
namics. To calculate the SAC, we use Eq. (1) that we adapted
from Jung and Yun (2020).

SACx,r,poly =∑{(
Ar,poly−Ar,poly

)(
Ax,poly−Ax,poly

)}√∑{(
Ar,poly−Ar,poly

)2}∑{(
Ax,poly−Ax,poly

)2}
x = date1 . . .dateN+1; x 6= r (1)

with SACx,r,poly the spatial amplitude correlation for the im-
pacted area of date x in reference to date r , Ax,poly the am-
plitude pixels of impacted area at date x, and Ar,poly the am-
plitude pixels of impacted area at reference date r . Instead of
calculating correlation between two subsequent images over

Figure 3. Flowchart of the four-step methodology. Rectangles rep-
resent initial input imagery, output image stacks, or time series
products. The rhombus represents the external software product.
Hexagons represent methodological steps, which are described in
the text. (1) Pre-processing of the S1 imagery using the Mas-
Ter processing chain to acquire amplitude and coherence image
stacks. (2) Application of the spatial amplitude correlation (SAC)
method using empirical cumulative distribution functions (ECDFs)
on the amplitude image stack resulting into SAC time series.
(3) GH pixel(s) averaging for every image in the amplitude and
coherence image stacks resulting in amplitude and coherence time
series. (4) Application of binary segmentation change detection to
acquire the date of the most significant change within the amplitude,
SAC, and coherence time series.

a given window, we calculate the correlation using one refer-
ence image (Ar ) and all the other images within the time se-
ries (Ax) using only the pixels within a designated impacted
area (e.g. single GH feature or complete GH event) (subscript
“poly”). Consequently, every image within the amplitude im-
age stack can be used as a reference image, and due to slight
changes within every amplitude image this will inevitably re-
sult in different SAC time series, one better highlighting the
GH event than the other. We apply the equation separately for
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ascending and descending images in a parallel workflow. Fig-
ure 4 shows schematically how the SAC time series should
behave using different reference images. Taking a reference
amplitude image before the GH event occurrence (Fig. 4a)
results in high SAC before and low SAC after GH event oc-
currence. The opposite is expected when using a reference
amplitude image after the GH event (Fig. 4b).

We use every available image within the amplitude image
stack as a reference image and calculated the respective SAC
time series from it. From here, it is necessary to identify the
most appropriate reference image.

Hence, we develop a new methodology that identifies the
most suitable reference amplitude image by finding the SAC
time series that most distinctively shows changes related to
the GH event occurrence. We distribute every SAC time se-
ries as empirical cumulative distribution functions (ECDFs)
resulting in multiple ECDF curves equal to the number of
reference images. A SAC time series that contains a distinct
change indicative of the GH event occurrence will show a
similar distinct change in its ECDF. Contrastingly, SAC time
series that fail to distinctively highlight the GH event show an
ECDF that is similar to a normally distributed ECDF. There-
fore, we create a normally distributed ECDF, using the mean
and standard deviation derived from the ensemble of ECDF
curves, and identify the ECDF that deviates most from it.
Per ECDF we calculate and cumulate the difference from the
normally distributed ECDF. The ECDF with the highest cu-
mulative difference is chosen as most representative, and the
related SAC time series was used.

3.3 Geomorphic hazard event timing estimation

GH event timing is determined on two scales within separate
workflows:

– Timing workflow 1: the complete GH event scale. In this
workflow, the steps outlined in Fig. 3 are carried out
once using all pixels encompassing the full GH event.
This results in one ascending and one descending track
time series for amplitude, SAC, and coherence.

– Timing workflow 2: the individual GH scale. In this
workflow, the GH event is subdivided in multiple in-
dividual GH features and the steps outlined in Fig. 3 are
carried out separately for each individual GH feature.
This results in multiple ascending and multiple descend-
ing track time series, equal to the number of individual
GH features, for amplitude, SAC, and coherence.

In both workflows, we do not choose to remove fuzzy pixels
(i.e. edge pixels that contain both impacted and non-impacted
landscape) since we do not know the effect of these pixels
on the SAR time series and GH event timing estimations.
This allows us to establish baseline results. The ascending
and descending track data are processed separately through-
out the two workflows. Amplitude and coherence time series

are generated by averaging the values within the identified
impacted area per image (Fig. 3, step 3), and the SAC time
series are generated by applying the SAC method (Fig. 3,
step 2; Sect. 3.2) within both workflows. The resulting time
series are normalised using the time series average to im-
prove comparability.

Additionally, we make an effort to remove the seasonal
influence and atmospheric effect on the amplitude and co-
herence time series by subtracting the regional amplitude
and coherence trend (i.e. time series) from the GH event
scale amplitude and coherence time series (timing work-
flow 1). Both precipitation events and seasonal vegetation
dynamics are expected to cover the complete GH event and
its surrounding area. This detrending will therefore empha-
sise the change induced by the GH event occurrence while
removing any regional changes induced by either seasonal
vegetation dynamics or atmospheric effects (e.g. Jacque-
mart and Tiampo, 2021). The regional amplitude and coher-
ence time series are established by following step 1 and 3
in the methodology flowchart (Fig. 3), using a larger area
surrounding the GH events as input (i.e. a square of ap-
prox. 1.5 times the GH event area, excluding the exact lo-
cation of the GH event). This results in the detrended ampli-
tude and detrended coherence data products. SAC is created
to already consider seasonal vegetation dynamics, so no ad-
ditional detrending for this data product is performed.

We decide not to detrend individual GH feature time se-
ries (timing workflow 2), which could include the use of
a detrending buffer (e.g. Burrows et al., 2022). Since we
deal with complex heterogenous land cover, proximate land
cover does not necessarily represent the land cover at the
GH feature, which prohibits it from accurately detrending.
Additional research is required before implementing such a
method within a wide variety of environments.

Timing is defined on every time series (for amplitude,
SAC, and coherence) using a binary segmentation change
detection approach (Bai, 1997; Fryzlewicz, 2014) using the
Python package ”ruptures” (Truong et al., 2020) (Fig. 3,
Step 4). The algorithm was set to predict only one break-
point since we aim to detect the most significant change in
the time series. The output of the applied binary segmen-
tation change detection algorithm is a value that represents
the location of an image within the image stack. The date of
this image is extracted and assigned as the earliest date af-
ter the GH event occurrence. This applies for the amplitude
and SAC time series. However, since coherence is based on
image pairs, it would identify the image pair right after the
GH event. We therefore assign the first date from this image
pair as the earliest date after the GH event occurrence. On
the complete GH event scale (timing workflow 1) this results
in two dates (from ascending and descending track) per data
product (amplitude, detrended amplitude, SAC, coherence,
detrended coherence). On the individual GH scale (timing
workflow 2), this results in several dates, equal to 2 times
(one for ascending and one for descending track) the number

Nat. Hazards Earth Syst. Sci., 22, 3679–3700, 2022 https://doi.org/10.5194/nhess-22-3679-2022



A. A. J. Deijns et al.: Timing landslide and flash flood events from SAR satellite 3687

Figure 4. Idealised schematic of the SAC method using two different reference images: one before and one after the occurrence of the
GH event (a, b). Squares represent images; the red dotted line indicates the occurrence of a GH event. Inside the images are the conditions
of the impacted area (represented here as single GH feature but similar for complete GH event). Pre-event conditions are displayed in green.
Post-event conditions are displayed in brown. The black curved lines represent the combination of images on which Eq. (1) is applied to
achieve the resulting SAC time series. The schematic SAC graphs (right) depict the expected results using a reference image before the
event (a) with high correlation before and low correlation after the event and using a reference image after the event (b) with low correlation
before and high correlation after the event.

of individual GH features per data product (amplitude, SAC,
coherence). Here we identify the date that occurred most fre-
quently (majority) as representing the timing of the event.
We define the minimal uncertainty in timing estimation by
the difference between the estimated date of occurrence and
the date of the image prior to that (i.e. a maximum of 12 d).

3.4 Sensitivity analysis with respect to landscape
characteristics

In Sect. 2.3 we discuss the controlling factors on the SAR
signal. Here, we aim to understand the influence of these con-
trolling factors plus the influence of individual GH properties
on the detectability of the event timing. We carry out a sen-
sitivity analysis on GH area (effect of a changing number of
pixels/pixel mixing, Deijns et al., 2020), slope angle (change
in image acquisition geometry, Zebker and Villasenor, 1992;
Hanssen, 2001), land cover (changing vegetation and soil
moisture patterns, Giertz et al., 2005), and slope aspect (dif-
ferent effect of layover, shadowing within ascending and de-
scending track, Hanssen, 2001; Dzurisin, 2006). We carry
out the analysis separately for the ascending and descending
track images. Per individual GH feature, we derive the aver-
age value of the above-mentioned parameters. We find more
smaller-sized GH in the Rwanda GH event (Fig. 5a), a slight
deviation (peak more to the left) in slope distribution for the
Uganda GH event (Fig. 5b), and a large variation in slope as-
pect distribution for different GH events (Fig. 5d). Addition-
ally, land cover distribution is different for every GH event
(Fig. 5c), which corroborates with what we see in Fig. 2.

The sensitivity analysis is carried out iteratively over every
parameter from a minimum value to a maximum value using

predefined steps (area: 1000 m2, slope: 5◦, land cover: per in-
dividual land cover type, slope aspect: 45◦). Per iteration the
GH inventory is reduced to contain only individual GH fea-
tures that meet the iteration conditions. We exclude bins that
contained less than 20 individual GH features to avoid non-
sense (very high or very low) values that would negatively
influence the quality of the trend.

Per bin size, we calculate the timing for every individual
GH feature and the percentage of timing estimates that fall
within 1 month of the actual event occurrence over the total
number of individual GH features. Higher percentages indi-
cate more timing estimates closer to the actual event occur-
rence. The variations within this percentage are subsequently
analysed to relate changing characteristic to performance.

4 Results

4.1 Geomorphic hazard event time series

We created amplitude, detrended amplitude, SAC, coher-
ence, and detrended coherence time series for the four
GH events in Uganda, Rwanda, Burundi, and DRC (location
in Fig. 1) and present it in Fig. 6 together with the average
monthly Landsat 8 NDVI and IMERG monthly cumulative
precipitation.

The distinctiveness of the GH event occurrence within the
time series varies significantly per data product (Fig. 6). SAC
(Fig. 6i–l) and coherence (Fig. 6m–t) time series showcase
the timing of the event with a significant change of value at
the time of the event occurrence. A significant decrease in
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Figure 5. Parameter distributions per GH event (Uganda, Rwanda, Burundi, and DRC). (a) Percentage of individual GH over total amount of
individual GH against area (m2), bins of 1000 m2. (b) Percentage of individual GH over total amount of individual GH against slope angle,
bins of 5◦. (c) Amount of individual GH against land use/land cover. (d) Percentage of individual GH over total amount of individual GH
against slope aspect, bins of 15◦.

co-event (the coherence value from the pre- and post-event
image) coherence is not visible.

The amplitude time series do not show any distinct change
at the time of the GH event occurrence (Fig. 6a–h) except
for the Uganda GH event (Fig. 6a and e). Particularly in the
amplitude time series, and to a minor extent in the coher-
ence time series, clear cyclicity can be observed that cor-
responds with the two drier periods (December–February
and June–August) that are prevalent in the region (Bonfils,
2012; Nicholson, 2017; Monsieurs et al., 2018a). The NDVI
shows seasonal correlation with the precipitation patterns,
where NDVI patterns follow precipitation patterns with a
short time lag (Fig. 6u–x). Stronger NDVI variations align
with a stronger cyclicity within the amplitude, SAC, and co-
herence time series, which is particularly visible when com-
paring the Uganda GH event (weak amplitude SAC and co-
herence cyclicity, limited NDVI fluctuations) and the DRC
GH event (stronger amplitude, SAC, and coherence cyclicity,
large NDVI fluctuations). The cyclicity clearly influences the
distinctiveness of the GH event within the time series. When
comparing the landscape of both GH events (Fig. 2a and d),
a sharp contrast is observed. The Uganda GH event region is
mostly covered by forest, whereas the DRC GH event region
is mostly covered by grass- and cropland. Consequently, we
find that seasonal NDVI oscillations vary significantly from
one study area to another given the difference in landscape.

Time series detrending clearly reduces seasonal cyclicity
within the time series, which is particularly visible for the
coherence time series (Fig. 6q–t) and to a much smaller de-

gree for the amplitude time series (Fig. 6e–h). For example,
the DRC GH event coherence time series benefits from this
detrending procedure such that seasonal cyclicity is almost
completely removed, leaving a distinct increase in coherence
values after the occurrence of the GH event (Fig. 6t). De-
trending the amplitude time series shows a minor reduction
in cyclicity, but the distinctiveness of the GH event within the
time series remains low.

4.2 Geomorphic hazard event timing

Figure 7 shows the timing estimation at the GH event scale
(timing workflow 1) from the (detrended) amplitude, SAC,
and (detrended) coherence time series. The difference in days
from the actual occurrence of the GH event is visualised by
a range that incorporates the minimal uncertainty in timing
estimation (Figs. 7 and 8; see Sect. 3.3). Timing estimations
from the amplitude time series generally have lower accu-
racies with estimated timing ranging from a 46 d difference
(Uganda, descending) to a 1000 d difference (Uganda, as-
cending). Estimations from the SAC time series range be-
tween a 1 d (Uganda) and an 85 d (Rwanda) difference, and
estimations from the coherence time series range between a
1 d (Uganda) and a 47 d (Rwanda) difference. Highest accu-
racies are achieved with time series showing less seasonal
fluctuation and a steep change at the time of event occur-
rence (Fig. 5). Timing estimations from the detrended am-
plitude time series show an increased accuracy compared to
amplitude time series with the most significant change for the

Nat. Hazards Earth Syst. Sci., 22, 3679–3700, 2022 https://doi.org/10.5194/nhess-22-3679-2022



A. A. J. Deijns et al.: Timing landslide and flash flood events from SAR satellite 3689

Figure 6. GH event (detrended) amplitude (red), spatial amplitude correlation (SAC, green), and (detrended) coherence (black) time series.
The dashed red line represents the timing of the GH event occurrence within the time series. All coherence, amplitude, and SAC time series
show two lines of a similar colour representing the ascending and descending track time series. The time series are created according to the
complete GH event scale workflow described in Sect. 3.3. The bottom row shows the monthly cumulative precipitation (light-blue bars) from
IMERG satellite data and the monthly averaged NDVI values (grey line) from Landsat 8 (method described in Sect. 2.3).

Uganda GH event from a 46–1000 to a 13–22 d difference,
but performance is still poor and generally useless for accu-
rate timing estimation. Detrending the coherence time series
increases timing estimation accuracy compared to the non-
detrended coherence timing estimation for the DRC event
(25–32 to a 1–5 d difference), but in general the estimations
remain the same.

Figure 8 shows the timing estimation based on the individ-
ual GH features within the GH event (timing workflow 2).
Here, the estimated timing represents the date that is esti-
mated most frequently between all individual GH features (as
explained in Sect. 3.3). The percentage of individual GH fea-
tures that estimate this (most frequently estimated) date over
the total number of GH features (% maj) is shown in Fig. 8.

In general, timing estimations from the amplitude time se-
ries have low accuracies with estimated timing ranging from
a 13 d difference to an 831 d difference. A distinct increase
in accuracy is seen for the Uganda GH event compared to
the GH event scale (Fig. 7). However, the other GH events
do not show any distinct increase in timing estimation ac-

curacy. The % maj ranges between 13 % and 32.4 % and
shows that for some GH events, a large portion of the indi-
vidual GH features estimate a date that is far from the actual
date of the GH event occurrence. The percentage of individ-
ual GH features that estimate a date within 1 month of the
actual GH event occurrence from amplitude time series is
24.2 % (ascending) and 26.9 % (descending) for the Uganda
GH event, but much lower for the other GH events, corrob-
orating the fact that the timing detection method performs
poorly for the amplitude data product.

Timing estimations from the SAC time series from indi-
vidual GH features (Fig. 8) differ compared to the timing es-
timations at the GH event scale (Fig. 7). An increase in accu-
racy is seen for Rwanda (ascending) and DRC (ascending),
and a decrease in accuracy is seen for Burundi (ascending)
and DRC (descending). The estimated timing ranges from
a 1 d difference to an 85 d difference. Although estimated
timing accuracy is higher for SAC compared to amplitude,
% maj values are quite low, indicating weak estimations.
The percentage of individual GH that estimates a date within
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Figure 7. Estimated GH event timing using the complete GH event scale (workflow 1) for amplitude, detrended amplitude (red), SAC
(green), coherence, and detrended coherence (black). The darker coloured bar represents the ascending track results. The lighter coloured
bar represents the descending track results. The length of bars represents the uncertainty in timing (see Sect. 3.3). Dashed lines on the bars
represent the overlap between the ascending and descending track results.

Figure 8. Estimated timing from the individual GH feature scale (workflow 2) for amplitude, detrended amplitude (red), SAC (green),
coherence, and detrended coherence (black). The darker coloured bar represents the ascending track results. The length of bars represent the
uncertainty in timing (see Sect. 3.3). Dashed lines on the bars represent the overlap between the ascending and descending track results. In the
% maj column we present the percentage of individual GH features over the total number of individual GH features that were included in the
majority vote separated for the ascending (asc) and descending (dsc) track. In the “within one month” column we present the percentage of
individual GH features over the total number of individual GH features that estimated a date within one month of the actual event occurrence.

one month of the actual GH event occurrence ranges from
0.2 (Rwanda, descending) to 38.1 (Uganda, descending). Ex-
ceptionally, for the Uganda GH event, % maj and estimated
timing within one month of the GH event occurrence from
the SAC time series is highest in comparison with amplitude
and coherence (Fig. 8).

Timing estimations from the coherence time series from
individual GH features (Fig. 8) are similar to those achieved

at the GH event scale (Fig. 7) and have, generally, the highest
accuracy for all data products. The % maj values ranged from
13.5 (Burundi, ascending) to 38.4 (DRC, descending). The
percentage of individual GH features that estimates a date
within one month of the actual GH event occurrence ranges
from 0 (Rwanda, descending) to 38.4 (DRC, descending).
The low percentages from the Rwanda descending track can
be attributed to the fact that the estimated date is 37 d from
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the GH event occurrence and therefore just falls outside the
1-month threshold.

4.3 Sensitivity analysis with respect to landscape
characteristics

GH size seems to have a clear influence on time estimation
accuracy. Specifically, the SAC and coherence show a clear
increase in percentages of estimated timing within 1 month
of the GH event occurrence with increasing GH size (Fig. 9a–
f). R2 values show a relatively reliable fit for both SAC and
coherence. Amplitude shows a slight increasing trend, but
associated R2 values are non-significant.

Slope trend lines (Fig. 9g–l) show in general little to no
inclination and R2 values are non-significant, except for the
coherence ascending track. Here, a clear increase in estima-
tion accuracy becomes visible with increasing slope angle
with a comparatively high R2 (although clearly less signifi-
cant than R2 from the GH size analysis).

To assess the general influence of land cover on the ability
to estimate GH event timing, we combined both the ascend-
ing and descending track results for all four GH events in
each boxplot (Fig. 9m–o). Each boxplot therefore contains
a total of eight data points per land cover type. The major
land cover classes within the GH events were tree-covered
area, grassland, and cropland (Fig. 4d). Median percentage
values range around 9 %–10 % for amplitude, 11 %–16 % for
SAC, and 27 %–34 % for coherence. Although median values
within the grassland land cover type seem to be systemati-
cally higher among the three data products (amplitude, SAC,
and coherence), differences with other land covers are quite
small. No specific land cover shows a significant better per-
formance.

To assess the influence of the slope orientation, we de-
rive the difference between ascending and descending track
percentages per bin and determine which track shows bet-
ter performance (Fig. 9p–s). For the results of the Rwanda
GH event (Fig. 9q), we see for SAC and coherence an all-
round favourability for the ascending track, which can be ex-
plained by the fact that, like the results in Fig. 8, the Rwanda
GH event had almost no estimations within one month of
the GH event occurrence for the descending track. The re-
sults presented for Uganda, Burundi, and DRC GH events
(Fig. 9p, r and s) show a general favourability of the ascend-
ing track for individual GH features that have an aspect of
approximately 45–180◦, whereas a general favourability of
the descending track for individual GH features that have an
aspect of approximately 225–360◦. In contrast to this gen-
eral trend, the opposite seems to be visible for the Uganda
GH event coherence.

5 Discussion

In this study we present a regionally applicable methodology
to automatically determine GH event timing using S1 SAR
data. Our study improves on the recent advances in GH event
timing estimation research as (1) we are one of the firsts
to use amplitude, SAC, and coherence time series in a sys-
tematic manner to detect the timing of GH events (Mondini
et al., 2021); (2) we defined a methodology where no prior
knowledge of the GH event timing is required; (3) we applied
our methodology on contrasting landscapes, and (4) we com-
bined, for the first time, landslides and flash floods in a sin-
gle detection approach. Here we discuss our insights, results
considering recent developments, and the potential improve-
ments and future perspectives of our methodology.

5.1 Insights into geomorphic hazard event timing
estimation from SAR

5.1.1 Geomorphic hazard event timing estimation

The use of amplitude or detrended amplitude time series in
our methodology does not prove to be an effective approach
to accurately determine the timing of GH events since it gives
an estimation accuracy of 13 to 1000 d with the actual time
occurrence of the events. A clear increase in accuracy is ob-
tained from SAC with an accuracy of 1 to 85 d. However,
the most accurate results are achieved with coherence and
detrended coherence with a 1 to a 47 d accuracy.

GH event timing accuracies are higher for GH events that
occurred in remote areas with low amounts of cultivation and
human influence (highest accuracies for Uganda GH event,
lowest for Rwanda GH event). The magnitude of the sea-
sonal vegetation oscillations, which shows connectivity with
the precipitation patterns (Fig. 6), varies significantly with
changing landscapes and results in profound seasonal cyclic-
ity in both the amplitude and coherence time series. Although
the coherence is additionally influenced by atmospheric ef-
fects (Rocca et al., 2000), the influence of both the vegetation
and atmosphere on the coherence does not obscure the GH-
event-induced change within the time series. Notably, after
detrending, the effects of both seem to be almost negligible.
Denser and taller vegetation result in lower seasonal cyclic-
ity within the amplitude and coherence time series. S1 op-
erates in C-band frequency, meaning that the emitted signal
penetrates the canopy layer and subsequently bounces on the
branches and leaves underneath (Dzurisin, 2006). A reduc-
tion in vegetation after a seasonal dry period within sparsely
vegetated areas, i.e. the grass- and croplands in the DRC
GH event, will likely expose the soil underneath and have
a pronounced influence on the backscattering signal given
the difference in backscattering properties of vegetation and
soil (Strozzi et al., 2000; Weydahl, 2001; Colesanti and Wa-
sowski, 2006; Tessari et al., 2017). In contrast, a seasonal
dry period in a dense forest (i.e. Uganda GH event) would
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Figure 9. Timing estimation performance over changing individual GH feature area (a–f), slope angle (g–l), land cover (m–o) and slope
aspect (p–s). The y axis displays the percentage of individual GH features that estimated a timing that falls within one month of the actual
GH event occurrence over the total number of individual GH features per GH event. Bin sizes: area= 1000 m, slope angle= 5◦, slope
aspect= 45◦. Area (a–f) and slope angle (g–l) plots are separated per track, and the colours indicate the different GH events. The black
dashed lines present the linear trend lines fitted to the data (a–l) for which the associated R2 values are included. Land cover (m–o): boxplots
give lower and upper quartiles and median. The whiskers of each box represent 1.5 times the interquartile range. Outliers beyond whiskers
are shown as dots. Slope aspect (p–s): the polar plots present the favourability of the ascending (ASC) or descending (DSC) track per slope
aspect (see Sect. 4.3). The colour of the polar plot background indicates the SAR data product.

affect the density of the canopy cover. However due to the
height and close vicinity of the vegetation to each other a dry
period does not necessarily lead to more soil exposure. This
is corroborated by the fact that the NDVI does not change
much for the Uganda GH event despite the seasonal patterns
in precipitation (Fig. 6). The regions that are covered with
the denser and most uniform vegetation are commonly envi-
ronments with the lowest chance of getting timing informa-
tion from other sources (media, citizen-observer networks)
as compared to GH events in more inhabited landscapes (Ja-
cobs et al., 2019; Monsieurs et al., 2019).

The complex reaction of the SAR signal to soil moisture
and roughness change can cause both an increase and de-
crease of the amplitude at the same GH event location (Mon-
dini et al., 2021; Burrows et al., 2022). Next to the seasonal
influence (Fig. 6), this can also be a potential reason why

no significant changes at the timing of the GH event are dis-
tinguished for all GH events. The inter-pixel variation cap-
tured in SAC proves to be a good tool to account for both
this potential increase and decrease and any seasonal varia-
tion in amplitude values at the location of the GH event and
increased timing estimation accuracy.

The pre-event, co-event, and post-event coherence values
of our four GH events correspond with the study of Tzou-
varas et al. (2020), where a distinct difference in pre- (low)
and post- (high) GH event coherence values is observed at
the location of a landslide occurrence. We observe the same
patterns with the GH events that contain flash floods, likely
because a clear landscape change is observed after the oc-
currence of the (often sediment-rich) flash floods (Fig. 1).
The co-event coherence drop as observed by Tzouvaras et
al. (2020) and Burrows et al. (2019) at the location of a land-

Nat. Hazards Earth Syst. Sci., 22, 3679–3700, 2022 https://doi.org/10.5194/nhess-22-3679-2022



A. A. J. Deijns et al.: Timing landslide and flash flood events from SAR satellite 3693

slide occurrence does not prove to be significant enough to
be able to determine GH event timing. This is most likely
attributed to the fact that the GH events occurred in low-
coherence (vegetated) areas (Weydahl, 2001; Tessari et al.,
2017).

5.1.2 Geomorphic hazard event distribution

An increase in GH area improves the accuracy of timing de-
tection, which can likely be related to the increased num-
ber of pixels fully covering the GH feature relative to the
fuzzy edge pixels (e.g. Foody and Mathur, 2006; Deijns et
al., 2020; Zhong et al., 2021).

Generally, accuracy is not correlated with slope angle
(Fig. 9). However, an increase in accuracy, with increasing
slope, with a relative low reliability is observed for coher-
ence. Nevertheless, this trend must be considered with a cer-
tain caution: (1) the trend is dependent on the quality of
terrain correction during the pre-processing step (Sect. 3.1),
which should make SAR values independent of slope angle
(Small, 2011); (2) a changing slope angle could influence the
GH size (Chen et al., 2016); and (3) we take the average slope
angle per GH. Elongated GH features (mainly the flash flood
features in the GH inventories) will have an average slope
angle that is not representative of every part of the GH.

Although a clear difference can be observed in time se-
ries response to GH events located in different landscapes
(Fig. 6), the comparison with the land cover does not al-
low for finding a clear relationship with the type of veg-
etation (Fig. 9). Since the land cover distribution is not
equal amongst GH events (Fig. 5), the results are, for some
GH events, based on a low number of individual GH features.
The general trends could therefore also be influenced by ad-
ditional underlying trends such as GH size and GH slope
angle. The observed large variation in values per boxplot
(Fig. 9m–o) might be an indication of this.

By using the right-looking S1 satellite data, foreshorten-
ing and layover effects should be limited with descending
track acquisitions for GH exposed towards the west (180–
360◦) and with ascending track acquisitions for GH exposed
towards the east (0–180◦). The shadow affects in the opposite
direction and is dependent on the slope of the terrain (Bamler,
2000). We see that, generally, the individual GH features on
the west-facing slopes have higher timing estimation accura-
cies using the descending track imagery and the individual
GH features on the east-facing slopes have higher timing es-
timation accuracies using the ascending track imagery, which
is as expected.

However, there remains variability in the result; for exam-
ple, an opposite pattern is visible for the Uganda GH event
with the coherence and a partial favourability for the de-
scending track acquisition on east-facing slopes is visible for
the DRC GH event. Future research on the detailed effect of
changing GH feature aspects on the ascending and descend-

ing SAR time series can provide additional valuable infor-
mation in this context.

Our derived trends are established from GH events with
each of the 318 to 1063 individual GH features and provide a
good indication of the SAR response to changing landscape
parameters. It remains interesting to see if these trends sus-
tain with the addition of more GH events from different land-
scapes.

5.2 Result considering recent developments in
SAR timing detection

Our results are somewhat in contrast with Burrows et
al. (2022), who argue that coherence is less performant than
amplitude for GH event timing. Using amplitude data, they
were able to estimate the timing of ∼ 30 % of landslides per
inventory with an accuracy of ∼ 80 % and an average preci-
sion of 12 d. Whereas by using coherence (60× 60 m reso-
lution) they acquired much less accurate results (24 %–47 %
correctly estimated). Their study, however, differs in several
aspects from our analysis:

1. Burrows et al. (2022) applied their method with a pre-
defined notion of GH event timing, i.e. known year and
season. For our GH events, we see distinct seasonal dy-
namics mainly within the amplitude time series. Zoom-
ing in on a specific time frame (3 months before and
3 months after the GH event occurrence like Burrows et
al., 2022) reduces the overall seasonal dynamics, which
could be the cause of a wrongly identified GH event
change. Reducing this time window will potentially im-
prove the detectability of the GH event within the time
series. However, our methodology is intended to be ap-
plicable in areas such as the western branch of the East
African Rift, an area characterised by data scarcity (De-
witte et al., 2021). In areas like these, information on
the temporal distribution of GH events may not always
be available. We therefore defined a methodology that
requires no knowledge on GH event timing before ap-
plication, which is an advantage if no GH event timing
is present; however, this increases the chance of any sea-
sonal influence visible within the time series.

2. They applied their method on landslides only. In our
case, the addition of flash floods to the inventories intro-
duces different types of contrasting GH shapes, slopes,
and land cover (flash floods tend to be elongated and oc-
cur in the valleys with shallower terrain, whereas land-
slides occurred mainly on the steeper hillslopes) that
can influence the SAR time series, specifically if the
flash flood enters urbanised areas (such as in the DRC
GH event) or run through a seasonally dynamic chan-
nel with seasonally changing soil moisture levels influ-
encing the SAR signal (Ulaby et al., 1996; Scott et al.,
2017).
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3. Their used landslide inventories (from Roback et al.,
2018, and Emberson et al., 2022) are located in densely
vegetated areas (NDVI between 0.6 and 0.8). In agree-
ment with Burrows et al. (2022) our results show that
the Uganda GH event, where most of the landscape con-
sists of dense vegetation (i.e. the highest NDVI values),
estimated GH event timing accuracies are the highest
among all GH events, obtaining a 1–2 image difference
from the actual GH event occurrence for SAC (1–16 d)
and (detrended) coherence (1–8 d). Although amplitude
is overall less performant for the Uganda GH event, we
still achieve an accuracy of 13–22 d for the detrended
amplitude.

4. We do not threshold on individual GH area. Specifically,
the Rwanda GH event contains a GH event size dis-
tribution that includes many small individual GH fea-
tures below the threshold used in Burrows et al (2022)
(Fig. 5). Together with the complexity and large frac-
tion of cultivation of the landscape this clearly results in
reduced estimation accuracies.

5. They removed landslide timing estimations using the
magnitude of change caused by the landslide within the
SAR time series, which allowed them to improve the
estimation accuracy.

5.3 Improvements and perspectives

The current methodology successfully allows for analysing
a GH event timing from SAR, but several improvements can
be considered in future research.

5.3.1 Improvements

1. In the current methodology we do not detrend individ-
ual GH feature time series (see Sect. 3.3). Because de-
trending does increase timing accuracy within our study,
further research on accurate detrending of individual
GH time series can potentially greatly benefit timing es-
timation accuracy.

2. We use one change detection algorithm (ruptures:
Truong et al., 2020) to estimate GH event timing. Com-
paring multiple change detection algorithms (e.g. Dei-
jns et al., 2020; Burrows et al., 2022) could potentially
benefit GH event timing estimation accuracy.

3. The quality of the amplitude and coherence imagery is
dependent on the quality of the pre-processing applied
with the MasTer tool (Derauw et al., 2020; d’Oreye
et al., 2021) and how it deals with the different steps
such as co-registration, radiometric terrain correction,
and geocoding. Quality of the imagery in its turn is also
dependent on, among others, the multi-look factor (am-
plitude), the interferometric multi-look factor, and the

maximum temporal and perpendicular baselines (coher-
ence). In addition, different polarisations may yield dif-
ferent results (Shibayama et al., 2015; Psomiadis, 2016;
Park and Lee, 2019), and the use of a different polarisa-
tion can potentially improve event detectability within
the time series. Improvements within the SAR imagery
might be achieved by tweaking and closely investigat-
ing different pre-processing steps to achieve better im-
age quality.

4. The SAC result depends on the ability to find the best
reference image (Sect. 3.2). Additional efforts can be
made to better find the SAC time series that shows the
most significant change related to the GH event occur-
rence. For example, a preliminary filtering of very noisy
SAC time series (before applying our developed method
using the ECDFs) can potentially benefit the ability to
acquire the best reference image.

5.3.2 Perspectives

1. We have studied, for the first time in a GH event tim-
ing detection approach, both landslides and flash floods
in a combined methodology. Since these GHs often co-
occur and interact (Marengo and Alves, 2012; Jacobs et
al., 2016a; Rengers et al., 2016), they should be anal-
ysed in a multi-hazard approach. Our methodology can
be well applied within such an approach. For exam-
ple, multi-hazard inventories can serve as input for our
methodology if there is a need to improve their timing
accuracy. Results can subsequently be used in hazard
assessment, early warning, and disaster risk reduction
strategies.

2. Our study shows that there is a clear advantage to
analysing different S1 SAR data products when estimat-
ing GH event timing. The fact that Burrows et al. (2022)
show better results for amplitude compared to coher-
ence data is in contrast with our results but reinforces
the idea of investigating both data products when ap-
plying the methodology to new regions.

3. Given the clear influence of landscape and climate
as controlling factors for SAR time series behaviour
(Sect. 2.3), we aimed to develop our methodology
within a variety of contrasting landscapes and contrast-
ing vegetation dynamics. This offers perspectives for
transferability. We show that slope angle does not seem
to influence accuracy (Fig. 9). Based on landscape char-
acteristics, transferability to other regions seems there-
fore likely to acquire good results, specifically for the
SAC, coherence, and detrended coherence time series
as they do seem less influenced by seasonal dynamics
than the amplitude and detrended amplitude time se-
ries (Fig. 6). However, climate drivers could also po-
tentially play a role. For example, since soil moisture
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and wetness have an influence on amplitude and coher-
ence time series (Ulaby et al., 1996; Srivastava et al.,
2006; Brancato et al., 2017; Scott et al., 2017), con-
trasting precipitation regimes within other regions could
potentially influence the response of the SAR time se-
ries and the estimated GH event timing accuracy. Ex-
amples of contrasting precipitation regimes are (1) a
lower amount of precipitation in more arid regions or
lower/higher amounts in other tropical regions (Fick
and Hijmans, 2017), (2) a change in precipitation sea-
sonal variability due to spatially different oscillation of
the ITCZ (Nicholson, 2017; Dewitte et al., 2022), and
(3) the effect of local topography and the presence of
lakes on the local precipitation patterns (e.g. Thiery et
al., 2015, 2016, 2017; Monsieurs et al., 2018b). The in-
fluences of these contrasting precipitation regimes on
SAR-based GH timing detection, however, remains to
be investigated. Additionally, in its current form, the
methodology does not account for the GH events that
occur within a time span that is longer than the acquisi-
tion time (> 6–12 d) of S1 images (i.e. multi-temporal
GH events). In that case one would require a time win-
dow of occurrence, rather than a specific date. The
methodology can be adapted to allow for it to derive
a time window of GH occurrence. This could mainly be
done following the GH event scale, where the start and
the end date of the GH event inducing change within
the SAR time series (applicable for all data products)
should be indicative of the time window of GH event
occurrence. However, this remains to be investigated.

4. The open-access S1 satellite with its high resolution,
high repeat time, and global coverage proves to be
an excellent data product for estimating GH event
timing and allows for our developed methodology to
be applied on every region of the world. The use
of our methodology with different satellite products
(e.g. Constellation of small Satellites for the Mediter-
ranean basin Observation-SkyMed (COSMO-SkyMed),
upcoming NASA–Indian Space Research Organisation
SAR (NISAR) satellite) is not straightforward. Differ-
ent available SAR satellite products operate in differ-
ent bands with their own characteristics (e.g. X-band
for COSMO-SkyMed; Covello et al., 2010, L-band for
NISAR; NISAR, 2018) that will likely have implica-
tions on the ability for accurate GH event timing esti-
mation. For example, the varying vegetation penetration
depths associated with different SAR bands (Dzurisin,
2006) will likely have an influence on the impact of
seasonal vegetation dynamics on the SAR time series
as observed for our GH events (Fig. 6).

5. The methodology can benefit (in terms of data availabil-
ity, scalability, and processing time) from implementa-
tion on a cloud computing service. Cloud computing

platforms such as GEE only provide pre-processed am-
plitude imagery (i.e. amplitude ground range detected
imagery). As such, they allow for the applicability of
our methodology using the amplitude, detrended am-
plitude, and SAC data products. To our knowledge, so
far, no cloud computing platform offers the possibility
for processing and using coherence data. Additionally,
the use of pre-processed amplitude imagery restrains us
from manual input during the pre-processing step (as
the MasTer Toolbox allows).

6. The methodology can potentially be combined with op-
tical data (e.g. Deijns et al., 2020) that could serve as
additional data to help narrow down the time window
and filter out any nonsense timing estimations.

6 Conclusion

We established a regionally applicable methodology to auto-
matically determine GH event timing from SAR images that
can be applied without prior knowledge of the GH event. We
successfully assessed the use of multiple SAR-derived data
products in their ability to accurately detect GH event timing
in contrasting landscapes. We show that landslides and flash
floods can be detected and studied together; hence, we open
new perspectives in the study of multi-hazards that can sub-
sequently aid in hazard assessment, early warning, and disas-
ter risk reduction strategies. Our methodology has the poten-
tial to be combined with existing spatial detection methods
to support inventory creation and boost GH event research in
remote inaccessible areas such as the African cloud-covered
tropics.

From a data processing point of view, the methodology
is established around an unprecedented analysis of various
SAR products coming from Sentinel-1 (S1) images. We show
that there is a need to investigate different SAR data products
when estimating GH event timing (amplitude, spatial ampli-
tude correlation, and coherence) since the signal response
can be different and sometimes contradictory when looking
at one single event. The implementation of our methodology
on a cloud computing platform can be beneficial in terms of
scalability, data availability, and processing time. However,
the main limitations in this context are (1) no control in pre-
processing of S1 imagery and (2) S1 coherence data are so
far not available within these platforms.

With a focus on four events containing a total of about
2500 landslides and flash flood features in contrasting land-
scapes, we propose a methodology that is adapted to be ap-
plied to other regions. Here, we focused on tropical environ-
ments where climate conditions and land use dynamics are
rather specific. However, we believe that the complexity of
these landscapes is an added value for the transferability of
the methodology. Additionally, the use of the globally avail-
able open-access S1 satellite data allows our methodology to
be applied on every region of the world.
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Code and data availability. Sentinel-1 data are provided open ac-
cess by ESA and retrieved from ASF DAAC (https://search.
asf.alaska.edu/#/; Copernicus, 2022a). Sentinel-2 data are pro-
vided open access by ESA and retrieved from Google Earth En-
gine (https://developers.google.com/earth-engine/datasets; Coper-
nicus, 2022b). Landsat 8 data are provided open access by the
US Geological Survey and retrieved from Google Earth En-
gine (https://developers.google.com/earth-engine/datasets; US Ge-
ological Survey, 2022). The Python scripts for the GH event
timing estimation, sensitivity analysis, and precipitation analy-
sis and the Google Earth Engine code for vegetation analysis
can be accessed at https://doi.org/10.5281/zenodo.7198346 (Dei-
jns, 2022a). The four GH inventories can be downloaded at
https://doi.org/10.5281/zenodo.7198322 (Deijns, 2022b).
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